Robust entropy-based endpoint detection for speech recognition in noisy environments

نویسندگان

  • Jia-Lin Shen
  • Jeih-Weih Hung
  • Lin-Shan Lee
چکیده

This paper presents an entropy-based algorithm for accurate and robust endpoint detection for speech recognition under noisy environments. Instead of using the conventional energy-based features, the spectral entropy is developed to identify the speech segments accurately. Experimental results show that this algorithm outperforms the energy-based algorithms in both detection accuracy and recognition performance under noisy environments, with an average error rate reduction of more than 16%.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Investigation on Wireless Speech Recognition by Data Contamination and Robust Training Techniques

This paper is concerned with the robust endpoint detection and noisy speech recognition over wireless network. Firstly, the MLP-based and GMM-based endpoint detection incorporated with data contamination and continuous spectral subtraction techniques were investigated. Then, for noisy wireless speech recognition, a combined technique of data contamination and robust training was proposed to sep...

متن کامل

Robust endpoint detection for in-car speech recognition

The endpoint detection plays a significantly important role in the front end processing of speech recognition. It is very difficult, however, to precisely locate endpoints on the input utterance to be free on non-speech regions because of unpredictable background noise. This paper proposes a novel approach that finds robust features for better endpoint detection in a noisy incar environment. In...

متن کامل

Speech/non-speech classification using multiple features for robust endpoint detection

In this paper, we describe a new speech/non-speech classification method that improves the endpoint detection performance for speech recognition in noisy environments. The proposed method uses multiple features to increase the robustness in noisy environments, and the classification and regression tree(CART) technique is applied to effectively combine these multiple features for classification ...

متن کامل

Speech Emotion Recognition Based on Power Normalized Cepstral Coefficients in Noisy Conditions

Automatic recognition of speech emotional states in noisy conditions has become an important research topic in the emotional speech recognition area, in recent years. This paper considers the recognition of emotional states via speech in real environments. For this task, we employ the power normalized cepstral coefficients (PNCC) in a speech emotion recognition system. We investigate its perfor...

متن کامل

An Information-Theoretic Discussion of Convolutional Bottleneck Features for Robust Speech Recognition

Convolutional Neural Networks (CNNs) have been shown their performance in speech recognition systems for extracting features, and also acoustic modeling. In addition, CNNs have been used for robust speech recognition and competitive results have been reported. Convolutive Bottleneck Network (CBN) is a kind of CNNs which has a bottleneck layer among its fully connected layers. The bottleneck fea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998